兴化优质陶瓷金刚石砂轮用途
发布时间:2022-07-28 01:02:44
兴化优质陶瓷金刚石砂轮用途
数控加工的特点:1、CBN砂轮自动化程度高,具有很高的生产效率。除手工装夹毛坯外,其余全部加工过程都可由数控机床自动完成。若配合自动装卸手段,则是无人控制工厂的基本组成环节。数控加工减轻了操作者的劳动强度,改善了劳动条件;省去了划线、多次装夹定位、检测等工序及其辅助操作,有效地提高了生产效率。2、对加工对象的适应性强。改变加工对象时,除了更换刀具和解决毛坯装夹方式外,只需重新编程即可,不需要作其他任何复杂的调整,从而缩短了生产准备周期。3、加工精度高,质量稳定。加工尺寸精度在0.005~0 .01 mm 之间,不受零件复杂程度的影响。由于大部分操作都由机器自动完成,因而消除了人为误差,提高了批量零件尺寸的一致性,同时精密控制的机床上还采用了位置检测装置,更加提高了数控加工的精度。4、CBN砂轮易于建立与计算机间的通信联络,容易实现群控。由于机床采用数字信息控制,易于与计算机辅助设计系统连接,形成CAD/CAM一体化系统,并且可以建立各机床间的联系,容易实现群控。

兴化优质陶瓷金刚石砂轮用途
材料磨削效率的提高方法:1、CBN砂轮采用新型金刚石砂轮磨削。推广和使用新型金刚石砂轮,是提高陶瓷材料磨削效率的有效途径。如特殊填料的砂轮,它是在砂轮结合剂中渗入一种特殊填料。用它磨削Si3N4陶瓷平面时,磨削比大幅度提高,同时也解决了原金属结合剂砂轮锋利度差的问题。还有铸铁结合剂砂轮。它与树脂结合剂砂轮相比,允许大的磨削深度,磨削比也大。在磨削Si3N4和zrO2陶瓷时,其磨削比分别是树脂结合剂砂轮的4倍和3倍。铸铁结合剂砂轮价格便宜,砂轮修整也容易,修整效率比青铜结合剂砂轮高75%。试验证明,羰基铁粉的加入增大了磨粒的保持力,游离片状石墨的存在,起到了润滑减少摩擦的作用。因此,铸铁结合剂金刚石砂轮是一种很有发展前途的新型结合剂砂轮。2、复合磨削法。此方法是在砂轮侧面进行放射状导电处理,使砂轮和工件之间产生脉冲放电。靠砂轮机械去除和电熔法去除材料的复合磨削法。用此方法磨削陶瓷,使工件表面磨削缺陷小,磨削效率高。3、CBN砂轮砂轮电解磨削。砂轮电解磨削是利用电解原理,使用铸铁基的金刚石砂轮,磨削困难的硬脆陶瓷材料磨削过程中,不断对砂轮结合剂进行电解,使磨损的金刚磨粒脱落,保持砂轮始终锋利。这种磨削方法使砂轮磨粒切人性好,磨削力小,磨削温度低,磨削表面质量好,其效率也高,工件表面粗糙度可以达到镜面。

兴化优质陶瓷金刚石砂轮用途
冷压工艺的特性 树脂金刚石砂轮的冷压工艺是怎么样的?的生产工艺主要有半热压工艺、冷压工艺和热压工艺三种。冷压工艺使用的结合剂有润湿剂和粉状树脂,通常用作润湿剂的有液体酚醛树脂、糠醛、糠醇、甲酚等,用的较多的是液体酚醛树脂。决定液体树脂和粉状树脂使用比例的因素有:磨料粒度分布、填料类型、液粉比填料用量、液体树脂的粘度、粉状树脂的性质等。如果液体树脂的粘度越大,完全包覆磨料表面就需要更多的液体树脂;磨料和填料的粒度越小,其比表面积就越大,液体的用量也就越多;粉状树脂的分子量越高、游离酚越低,其与液体树脂的附着力就越差,需要的液体量就越多。

兴化优质陶瓷金刚石砂轮用途
电化学性能的发展趋势:树脂砂轮随着电子、机械、光学等行业的快速发展,对于单晶硅、不锈钢、硬质合金等硬脆材料的加工表面质量及加工效率提出了越来越高的要求。这些硬脆材料一般均由研、磨、抛加工完成,其中可实现高效率、超光滑表面加工的ELID超精密磨削方法受到了科研与企业界的广泛重视。目前ELID技术主要采用金属结合剂砂轮,但这种砂轮存在制作困难,成本昂贵,并且对于功能材料的洁净表面加工容易造成污染等诸多问题。针对这些问题,提出一种以竹炭、树脂为结合剂的砂轮,这种砂轮具有制作简单、成本低,并且可以实现无污染、高效、高精度的镜面磨削加工。探讨砂轮的ELID磨削加工机理、以及针对砂轮的ELID磨削,研究新型的ELID磨削液,使磨削加工达到较优的效果是本文研究的重点。分析了砂轮的电化学性能,可以得出结论:砂轮具有良好的导电性能,并且通过电解作用后在表面产生一层钝化膜,为ELID技术的实现打下基础。磨削液作为磨削加工中的关键因素,从其防锈性能、冷却性能、润滑性能以及电解性能各方面综合分析,得出一种配方配比,能够很好的应用到ELID磨削加工中。磨削液的导电性在很大程度上决定着钝化膜的形成,采用BP神经网络和MATLAB联合仿真,建立磨削液导电率的预测模型,可以实现不同的磨削条件。采用研制的新型ELID磨削液进行了对不锈钢的磨削实验,通过对比实验结果,分别得到对于不锈钢粗加工和精加工的加工工艺,使加工效率和精度达到较优。

兴化优质陶瓷金刚石砂轮用途
化学性能的相关说明:树脂砂轮随着电子、机械、光学等行业的快速发展,对于单晶硅、不锈钢、硬质合金等硬脆材料的加工表面质量及加工效率提出了越来越高的要求。这些硬脆材料一般均由研、磨、抛加工完成,其中可实现高效率、超光滑表面加工的ELID超精密磨削方法受到了科研与企业界的广泛重视。目前ELID技术主要采用金属结合剂砂轮,但这种砂轮存在制作困难,成本昂贵,并且对于功能材料的洁净表面加工容易造成污染等诸多问题。针对这些问题,提出一种以炭、树脂为结合剂的陶瓷砂轮,这种砂轮具有制作简单、成本低,并且可以实现无污染、高效、高精度的镜面磨削加工。探讨树脂砂轮的ELID磨削加工机理、以及针对陶瓷砂轮的ELID磨削,研究新型的ELID磨削液,使磨削加工达到较优的效果是本文研究的重点。的电化学性能,可以得出结论:陶瓷砂轮具有良好的导电性能,并且通过电解作用后在表面产生一层钝化膜,为ELID技术的实现打下基础。磨削液作为磨削加工中的关键因素,从其防锈性能、冷却性能、润滑性能以及电解性能各方面综合分析,得出一种配方配比,能够很好的应用到ELID磨削加工中。磨削液的导电性在很大程度上决定着钝化膜的形成,采用BP神经网络和MATLAB联合仿真,建立磨削液导电率的预测模型,可以实现不同的磨削条件。采用研制的新型ELID磨削液进行了对不锈钢的磨削实验,通过对比实验结果,分别得到对于不锈钢粗加工和精加工的加工工艺,使加工效率和精度达到较优。